

Agitation and Temperature Control of Sample Wells in Bio-Layer Interferometry

Members: Heath Muskat (MSE), Kelsey Lawson (MSE), Adriana Mejia (MSE), Inkiad Ahmed (MSE), Sherwin Eftekharian (BME)

Engineering Mentor: Michael Dubrovsky, Co-Founder and CCO, SiPhox Inc.

SiPhox COVID-19 Device

SiPhox is developing a highly scalable COVID-19 test

A single CMOS chip factory can produce enough chips to

test all 7.8 Billion people monthly.

Member Responsibilities

UCI Samueli School of Engineering

- Over 13M COVID-19 cases and 265K deaths in U.S.³
- Current Diagnostic Test Methods⁴
 - Polymerase Chain Reaction (PCR) Test : detects genetic material of the virus, RNA
 - Sensitive and accurate
 - Usually not usable at point-of-care (POC)
 - Can take a few hours to a few days to return results
 - Antigen Test: detects specific proteins
 - Inexpensive, POC, fast turnaround time (15-60 min)
 - Less sensitive and accurate
- Testing prevents spread of infection and helps with treatment⁵

UCI Samueli School of Engineering

Daily Trends in Number of COVID-19 Cases in the United States [2]

Solution: Bio-Layer Interferometry (BLI)

- Shift in interference pattern of white light measures thickness of biological layer on biosensor tip
- Advantages³
 - High throughput
 - Accurate and highly sensitive
 - Fully automated
 - Excellent candidate for POC testing

Our Focus: Agitation and Temperature Control Components

Our team will:

- Design a prototype that is easily alterable to test various parameters including thermal conduction, fluid agitation, and temperature accuracy.
- Use multiple thermocouples to measure the temperature at various points on the block determine sufficient time for liquid in vials to reach optimum temperature use a feedback loop to control the heating elements output
- Analyze the time it takes for dye to sufficiently mix in the vials for agitation parameter
- Determine how accurately we can measure and maintain the temperature.

Design

			Total:	\$1,407.88	
		Name	Quantity	Price Per Unit	Total Price Per Total Units
CNC	to drive plate up and down	z axis stepper (d2)	1	\$40.00	\$40.00
	to mate with pulley from shaft	z stepper pulley (d2)	1	\$5.00	\$5.00
	to drive plate back and forth	y-axis stepper	1	\$23.99	\$23.99
	to drive plate left and right	x-axis stepper	1	\$23.99	\$23.99
	to operate the stepper motors	stepper controller	4	\$10.00	\$40.00
	to make structural facing/ input support	2x24x1/8" al	4	\$21.08	\$84.32
	to make structural framing	1x1x48x1/8" angle al	1	\$35.69	\$35.69
	to support the pulleys to drive axis moven	n rod (d1)	4	\$15.00	\$60.00
		acme threaded rods	4	\$27.00	\$108.00
		acme nuts	4	\$10.00	\$40.00
	to support the rods	bearing (d1)	12	\$10.00	\$120.00
		x/y stepper pulleys (d1)	12	\$5.00	\$60.00
	keeping gears in sync	belts	6	\$10.00	\$60.00
	cnc controll and calculations	Computer	2	\$60.00	\$120.00
	touch screen for user input	Interface	2	\$99.99	\$199.98
	creating flow across the sensors	agitation motors	4	\$10.00	\$40.00
	for homing the head	switches/sensors	3	\$5.00	\$15.00
	conducting the light	optical fiber	1	\$10.00	\$10.00
	measuring plate temperature	thermocouples	4	\$10.00	9.99
		fuse	1	\$5.99	\$5.99
		fuse holder	1	\$6.99	\$6.99
		heated bed	1	\$39.99	\$39.99
		heated bed controller	1	\$15.99	\$15.99
		hinge			
		handle			\$0.00
D Printing		filament	4	\$22.99	\$91.96
	bearing adaptors, tubs supports,	Operation /hour	80	\$1.00	\$80.00
MISC	grease/lubricants	light oil	2	\$10.00	\$20.00

Design Criteria

- Allowable temperature fluctuations
- Agitation motion to be no more than the difference of the ID of a vial and the diameter of the measuring probe
- Computer to allow for single interface to operate all parameters

Acceptance Criteria

- Our group can successfully analyze the time it takes for dye to sufficiently mix in the vials for agitation parameter
- The plate can accurately measure and maintain the optimum temperature.

Future Goals

	Week		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
Month First day of week Quarter		9	10	10	10	10	11	11	11	11	11	12	12	1	1	1	1	2	2	2	2	3	3	3	3	3	4	4	4	4	5	5	5	5	6	6
		28	5	12	19	26	2	9	16	23	30	7	14	4	11	18	25	1	8	15	22	1	8	15	24	31	7	14	21	28	5	12	19	26	2	11
		F	F	F	F	F	F	F	F	F	F	F	F	W	W	W	V	W	W	W	W	W	W	W	S	S	S	S	S	S	S	S	S	S	S	S
																															\square		\square	\square		
	Tasks																																			
	Get up to speed with the the current state of SiPhox											_																								
	UROP Proposal																								_				\equiv	\blacksquare						\equiv
	Define the Product Specifications																																			
Ì	Research Alternative Solutions																								_											
	Review Technical Solutions versus Requirements										-																								\equiv	_
	Detail Preferred Technical Solution																								_											_
	Preliminary Design Review Presentation																								_											_
	Engineering Fall Design Review Poster Exhibition																								_											_
	Implement Initial Prototype																																			_
	Review and Revise Design																																			_
	Compile Complete Documentation Prepare Slides/Poster for Final Presentations																																			
Tasks Key Not Started In Progress Completed													Heath Muskat Kelsey Luwann Responsibilities Key: Inkiad Ahmed Sherwin Pasha Eftekharian																							

References

[1] "OneLab," *SiPhox*. <u>https://siphox.com/onelab</u> (accessed Dec. 01, 2020).

[2] "U.S. coronavirus cases: Tracking deaths, confirmed cases by state," *Washington Post*.

https://www.washingtonpost.com/graphics/2020/national/coronavirus-us-cases-deaths/ (accessed Nov. 30, 2020).

[2] CDC, "COVID-19 Cases, Deaths, and Trends in the US | CDC COVID Data Tracker," Centers for Disease

Control and Prevention, Mar. 28, 2020. <u>https://covid.cdc.gov/covid-data-tracker</u> (accessed Nov. 29, 2020).

[4] "How Nanophotonic Label-Free Biosensors Can Contribute to Rapid and Massive Diagnostics of Respiratory Virus Infections: COVID-19 Case | ACS Sensors."

https://pubs.acs.org/doi/full/10.1021/acssensors.0c01180 (accessed Nov. 29, 2020).

[5] "Why COVID-19 testing is the key to getting back to normal," *National Institute on Aging*.

http://www.nia.nih.gov/news/why-covid-19-testing-key-getting-back-normal (accessed Nov. 30, 2020).